- 电话:021-69515711
- 手机:13818065015
- 传真:021-69515712
- 1049485
- 8459743
- 1993509414
- :renrimarket
- market@renri.com.cn
REN300B在线辐射安全报警仪是一种新型的x-γ辐射连续监测报警装置,它采用特殊设计的前置放大电路,具有灵敏度高、操作方便、自动显示和超阈值报警等特点,能实时给出xγ辐射剂量率。考虑到现场操作、应急快速响应的需要,主机安装在辐射现场,实现实时监测与就地报警,通过RS485通讯实现总控制室自动监控。
REN800A型中子、X、γ辐射周围剂量当量(率)仪内置一个进口He-3管和一个GM管作为探测器,能同时检测中子和X、γ射线。该仪器使用方便;灵敏度高、抗γ性能好、能量响应特性好。此外通过配套的RenRiRate辐射剂量管理软件可将存储的数据读出后分析。该仪器适用于环保、化工、石油、医疗、进出口商检
REN500A型环境监测用X、γ辐射空气比释动能率仪(又叫 智能化х、γ辐射仪)采用高灵敏的闪烁晶体作为探测器,反应速度快,该仪器具有较宽的剂量率测量范围。 该仪器除能测高能、低能γ射线外,还能对低能X射线进行准确的测量,具有良好的能量响应特性。此外
REN310型立柱式辐射监测系统,主要用于放射性监测场所的行人或行包通过的监测系统,采用大体积的闪烁体探测器作为探测器,具有体积小,便于携带,灵敏度高,误差小的特点,适用与核应急等特殊的放射性检测场合。该系统主要由安装在现场的立柱和远程计算机系统组成。立柱内置的
REN200型X、γ个人剂量报警仪(又叫X、γ辐射个人剂量当量HP(10)监测仪)内置高灵敏度盖格计数管为探测器,主要用来监测各种放射性工作场所的X、γ以及硬β射线的辐射,具有响应快,测量范围宽的特点。能显示工作场所的剂量当量率和累积剂量,更换电池时,日期及累积数据能永久保
REN300A在线辐射安全报警仪是一种新型的x-γ辐射连续监测报警装置,它采用特殊设计的前置放大电路,具有灵敏度高、操作方便、自动显示和超阈值报警等特点,能实时给出xγ辐射剂量率;仪器内置海量数据存储功能,能存储10年的历史数据且标配提供强大的RenLocal辐射监测数据分析软件。考虑
REN系列智能化辐射探头均可和REN300、REN300A、REN300B系列主机配套使用,也可以单独配套RenRiArea辐射区域监测软件使用。且具有RS485/RS232的通讯能力。所有探头均可单独外接报警灯,在超阈值的情况下就地给出声光报警。 (一)REN-GM-L型 GM管
材料: PVC塑料 不干胶 规格: 25 × 30cm 说明:电离辐射警告标志的含义是使人们注意可能发生的危险。其背景为黄色,正三角形边框及电离辐射标志图形均为黑色,“当心电离辐射”用黑色粗等线体字。标牌的尺寸、形状和颜色及文字描述严格按《GB 18871-200
工业γ射线探伤放射卫生防护要求
2008/1/14 10:54:00
工业γ射线探伤放射卫生防护要求
GB 18465-2001
中华人民共和国国家质量检验检疫总局2001-10-22批准 2002-03-01实施
前言
本标准除第1章、第2章和第3章外,其余都属强制性条款。
工业丁射线探伤是一项利用放射源的γ射线对金属构件内部结构进行照相的无损检测技术,由于此项作业操作现场复杂,且应用的放射源不止一种,操作过程中射线可能对人体造成危害,为了规范此类操作,保障从业人员的安全,特制定本标准。主要参考了GB/T 14058、DIN 54115第1部分及其附件和DIN 541.15第5部分的内容,并结合我国的实际情况而制定。
本标准从2002年3月1日起实施。
本标准的附录A、附录B都是标准的附录。
本标准由中华人民共和国卫生部提出。
本标准起草单位:山东省医学科学院放射医学研究所。
本标准起草人:邓大平、侯金鹏、朱建国、温继惠、汪春亮。
本标准由卫生部委托卫生部工业卫生实验所负责解释。
1 范围
本标准规定了γ射线探伤机防护性能及其使用过程中的放射防护和有关监测要求。
本标准适用于应用γ射线探伤机进行金属构件内部结构的无损检测实践。
2 引用标准
下列标准所包含的条文,通过在本标准中引用而构成为本标准的条文。本标准出版时,所示版本均为有效。所有标准都会被修订,使用本标准的各方应探讨使用下列标准最新版本的可能性。
GB 4075-1983 密封放射源分级(eqv ISO 2919:1980)
GB11806-1989 放射性物质安全运输规定
GB/T 14058-1993 γ射线探伤机
3 定义
本标准采用下列定义。
3.1 移动式探伤 mobile defect detecting
在室外、生产车间或安装现场用手提式或移动式γ射线探伤机进行探伤的工作过程。
3.2 固定式探伤 stationary defect detecting
在专用γ射线探伤室内用固定安装的或可有限移动的探伤机进行γ射线探伤的工作过程。
3.3 γ射线探伤室 gamma defect detecting room
放置γ射线探伤机和被检物体进行γ射线探伤并具有一定屏蔽作用的专用照射室。
4 γ射线探伤机的放射防护性能要求
4.1 源容器应符合GB/T 14058-1993中5.3的试验要求,其周围的空气比释动能率不超过表1所控制值。
表1 源容器周围空气比释动能率控制值 (mGy·h-1)
探伤机类别 |
容器外表面 |
距容器外表面 | |
50mm |
1m | ||
手提式 |
2 |
0.5 |
0.02 |
移动式 |
2 |
1 |
0.05 |
固定式 |
2 |
1 |
0.10 |
4.2 使用贫化铀做源容器屏蔽材料时,其对β射线的防护应符合GB/T 14058-1993中5.3.1条的要求。
4.3 每台γ射线探伤机的源容器及其中的密封源必须有符合GB/T 14058-1993中8.1.1、8.1.2条要求的标志。
4.4 γ射线探伤机的安全锁、联锁装置、源的位置指示器、系统故障时的安全装置、防止违章操作装置等安全装置的性能按GB/T 14085-1993中5.4条要求。
4.5 源托的安全性应符合GB/T 14085-1993中5.5条要求。
4.6 根据不同需要,放射源传输装置的长度应尽可能减短,每次照相后,放射源能立即返回源容器并进入关闭状态。
4.7 产品说明书应注明型号、规格和主要技术指标及设备保养、贮存、运输方法,还应包括:所用放射源的种类、特性、源容器外表面泄露剂量水平、安全措施、自动关闭功能及常见事故的处理方法等内容。
5 固定式探伤的放射防护要求
5.1 γ射线探伤室的建筑(包括辐射防护墙、门、窗、辐射防护迷路)应充分考虑直射、散射和屏蔽物材料和结构等各种因素并按本标准附录A(规范性附录)的要求确定防护厚度。
5.2 辐射防护墙外5cm处剂量率应小于2.5μGy·h-1。
5.3 辐射防护门入口处必须有固定的放射性危险标志,照射期间有醒目的"禁止入内"的警示标识;探伤室入口处及被探物件出入口处必须设置声光报警装置,该装置在γ射线探伤机工作时应自动接通,并能在有人通过时自动将放射源收回源容器;辐射防护门的防护性能应与同侧墙相同,其外5cm处的剂量率应小于2.5μGy·h-1,并安装门-机联锁装置和工作指示灯;机房内适当位置安装固定式剂量仪。
6 移动式探伤的放射防护要求
6.1 进行探伤作业前,必须先将工作场所划分为控制区和监督区。
6.2 控制区边界外空气比释动能率应低于40μGy·h-1。在其边界必须悬挂清晰可见的"禁止进入放射性工作场所"警示标识。未经许可人员不得进入该范围,可采用绳索、链条和类似的方法或安排监督人员实施人工管理。控制区范围的计算方法见附录B(规范性附录)。
6.3 监督区位于控制区外,允许有关人员在此区活动,培训人员或探访者也可进入该区域。其边界剂量应不大于2.5μGy·h-1,边界处应有"当心,电离辐射"警示标识,公众不得进入该区域。
6.4 进行探伤作业时,必须考虑γ射线探伤机和被检物体的距离、照射方向、时间和屏蔽条件,以保证作业人员的受照剂量低于年剂量限值,并应达到可以合理做到的尽可能低的水平。
7 放射源的安全要求
7.1 密封源选用的级别按GB4075选定,无保护的源为43515级、装置里的源为43313级。
7.2 放射源的更换应得到当地放射卫生防护部门批准并在防护专业人员的监督下进行,在完全屏蔽的装置里,采用远距离的抓取机和支撑装置进行。
密封源从运输容器中转装入源容器或从源容器转装入运输容器必须采用便于更换操作的辅助设备和具有足够屏蔽性能的装置。操作人员在一次更换过程中所接受的当量剂量不应超过0.5mSv。
7.3 放射源托的更换应由使用单位主管部门及当地放射卫生监督部门批准。如果装载和卸载带有放射源和源托的源容器是通过推进器进行的,就必须利用带足够屏蔽的适当的换装容器。
7.4 废弃的放射源按国家有关规定处理或处置,并有详细的记录归档保存。
7.5 放射源的运输按GB11806-1989中第4章的有关规定执行。
7.6 含源源容器或放射源应在专用放射源库内贮存。
7.7 在当地放射卫生防护主管部门指导下,使用单位应制定出合适的应急计划并作好相应的应急准备,计划内容包括:工作程序、组织机构、人员培训、应急计划演习、应急设施等。
7.8 操作现场必须配备适当的应急防护设备,如:足够屏蔽厚度的防护掩体、隧道式屏蔽块、柄长不短于1.5米的夹钳、适当长度的金属线、水池、沙袋等。
8 放射防护监测
8.1 作业人员的个人剂量监测
8.1.1 γ射线探伤作业人员必须进行常规个人剂量监测,并建立个人剂量档案和健康管理档案,其个人年剂量限值如下:
a)连续5年内年平均有效剂量20mSv;
b)任何单一年份内有效剂量50mSv;
c)一年中眼晶体所受的当量剂量150mSv;
d)一年中四肢(手和脚)或皮肤所受的当量剂量500mSv。
8.1.2 对作业人员还应进行意外事故的剂量监测,并有详细的记录。
8.2 γ射线探伤机防护性能监测
8.2.1 生产γ射线探伤机,应按GB/T 14058-1993中7.2和7.3的要求进行型式检验和出厂检验。
8.2.2 由使用单位所在地放射卫生技术服务机构按本标准第四章的放射防护性能要求对γ射线探伤机进行验收检测,其中本标准第4.1条要求的屏蔽效果试验按GB/T 14058-1993中第6.1条进行,合格后方能使用。
8.2.3 使用单位应经常对安全装置的性能进行检测,放射卫生技术服务机构每年进行一次。
8.2.4 探伤机被移动后,兼职防护人员必须用相应仪器进行安全装置的性能检测。
8.2.5 防护主管部门每年对密封放射源进行一次泄漏检验。
8.3 作业场所的防护监测
8.3.1 固定式探伤作业场所的防护监测
8.3.1.1 探伤室启用前必须进行验收检测,合格后方能使用。
8.3.1.2 每天工作前,探伤作业人员应检查安全装置、联锁装置的性能及警告信号、标志的状态。检查探伤室内是否有人员逗留。
8.3.1.3 每次探伤作业结束后,操作人员应用可靠的辐射仪器核查放射源是否回到安全位置。源容器出入源库时应进行监测并有详细记录。
8.3.1.4 由使用单位所在地放射卫生技术服务机构每年进行一次操作场所及探伤室临近区域的辐射水平测量,并根据测量结果提出评价或改进意见。当放射源的活度增加时,应重新测量上述辐射水平,并根据测量结果做出合适的改进。
8.3.2 移动式探伤作业场所的放射防护监测
8.3.2.1 每次探伤作业前应按本标准第8.3.1.2条检查探伤机,并检查控制区,确保在放射源暴露前控制区内无任何人员。
8.3.2.2 作业场所启用时,应围绕控制区边界测量辐射水平,并按不超过40μGy·h-1的要求进行调整。
8.3.2.3 建立操作现场的辐射巡测制度,定期观察放射源的位置和状态。
8.3.2.4 探伤作业结束后应进行本标准第8.3.1.3条的工作。
附录A
(标准的附录)
防护层的确定
A.1 原 则
A.1.1 在确定防护层时必须考虑有用线束的方向。如有用线束的方向没有限制,所有方向的防护层按A.2进行确定。如有用线束仅处于有限的方向,则除此有限方向按A.2确定防护层外,其余所有方向的泄漏辐射防护层按A.3进行确定。
A.1.2 由不同的屏蔽材料构成的多层防护,其总衰减度等于各个防护层的衰减度之乘积。
A.2 防止有用辐射的防护层
A.2.1 在距放射源的距离为a0时,该点的最高空气比释动能率KN,按式(A1)计算。
式中:KN——距放射源距离为a0时该点的最高空气比释动能率;
A——放射源的预期最大放射性活度,GBq;
τK——空气比释动能常数,mGy.m2.h-1.GBq-1;
a0——距放射源的距离,m。
A.2.2 按照式(A2)计算所要求的有用辐射的衰减度FN,
式中:KN——测到的或者按式(A1)计算出的在有用辐射束里距离放射源为的a0的比释动能率;(mGy/h);
a——距放射源的某一点的距离;m;
KG——距放射源为a的最高允许比释动能率(mGy/h)。
表A.1 比释动能常数гK,(mGy·m2)/(h·GBq)
放射源 |
60Co |
192Ir |
гK |
0.35 |
0.13 |
A.2.3 防止有用辐射束的防护层的厚度可从图A.1和图A.2中查得。通过在图A.1和图A.2中给出的质量厚度除以屏蔽材料的密度(g/cm3),就可以得出以cm为单位的防护层的厚度(详见A.2.4)。
A.2.4 防护层的公式计算
防护层的厚度d(cm)也可使用表A.2中的线性衰减系数μ的值,按照公式(A3)进行计算,严格用于图A.1和图A.2中曲线FN>10的线性范围。
式中:d——防护层的厚度,cm;
μ——线性衰减系数,cm-1;
τK——空气比释动能常数;
A——放射源的预期最大放射性活度,GBq;
a——距放射源的某一点的距离;m;
KG——距放射源为a的最高允许比释动能率(mGy/h)。
图A.1 60Co有用线束衰减度为FN,散射线衰减度为Fs,
泄漏辐射衰减度为FD时不同材料的质量厚度
A.2.5 辐射防护结构图上必须标明防止有用辐射束的全部防护墙的说明,包括墙厚、屏蔽材料名称及厚度。
图A.2 192Ir有用线束衰减度为FN,散射线衰减度为Fs,
泄漏辐射衰减度为FD时不同材料的质量厚度
A.3 防止泄漏辐射的防护层
防止源容器或屏蔽物的泄漏辐射的防护层,按照公式(A4)计算所要求的衰减度FD:
式中:KD——有用射束外,距放射源为a0的比释动能率(mGy/h)。
a0——从放射源至防护地点的距离(m)。
KG——距离放射源为a(m)时,该位置上最高允许的比释动能率(mGy/h)。
表A.2 线性衰减系数
材料 |
线性衰减系数μ(cm-1) | |
60Co |
192Ir | |
铅 |
0.565 |
1.484 |
铅玻璃 |
0.231 |
|
铁 |
0.3095 |
0.535 |
一般混凝土 |
0.0995 |
0.137 |
重晶石混凝土 |
0.1385 |
0.19 |
附录B
(标准的附录)
控制区的确定
B.1 根据放射源的γ射线向各个方向辐射时的不同情况,应确定三类不同的控制区距离,如图B.1所示。
图B.1 应用屏蔽物的控制区(无比例)
aⅠ:辐射没有任何衰减时要求的控制区距离;aⅡ:有用线束方向,经检测对象屏蔽后要求的控制区距离;aⅢ:有用线束方向以外,经源容器或其他屏蔽物屏蔽后要求的控制区距离。
B.2 对于移动探伤,控制区边界的当量剂量率为40μSv/h,可由如下评定各类控制区距离的大小:
aⅠ:系取自图B.2的控制区距离(m)
aⅡ和aⅢ:取自图B.2的控制区距离aⅠ(m),乘以表B.2中不同半减层数相对应的因子之积(可根据屏蔽物的厚度,除以表B.1中相应核素和屏蔽材料的半减层厚,求出其半衰减层数,进而从表B.2查出相对应的因子)。
表B.1 不同材料半减层厚的近似值
屏蔽材料 |
不同放射源的半减层厚(HVL)(mm) | |||
60Co |
192Ir |
169Yb |
170Tm | |
铝 |
70 |
50 |
27 |
20 |
混凝土 |
70 |
50 |
27 |
|
钢 |
24 |
14 |
9 |
5 |
铅 |
13 |
3 |
0.8 |
0.6 |
钨 |
10 |
2.5 |
|
0.09 |
铀 |
6 |
2.3 |
|
0.035 |
表B.2 用于控制区确定时在有衰减的辐射时aⅡ和aⅢ的因子
半减层数 |
因子 |
0.5 |
0.9 |
1 |
0.7 |
1.5 |
0.6 |
2 |
0.5 |
3 |
0.4 |
4 |
0.3 |
5 |
0.2 |
8 |
0.1 |
10 |
0.05 |
12 |
0.01 |
B.3 举例
192Ir,放射性活度1.85×1012Bq,检测对象为结构钢,厚度28mm(2HVL),放射源屏蔽物(照射容器壁)为钨制,厚25mm(10HVL)
aⅠ: 图B.2的控制区aⅠ=78m
aⅡ: 图B.2的控制区值aⅠ乘以表B.2的因子
aⅡ=0.5×aⅠ=0.5×78=39m
aⅢ:图B.2的控制区值aⅠ乘以表B.2的因子
aⅢ=0.05×aⅠ=0.05×78=3.9m
图B.2 辐射没有任何衰减时应用不同活度γ放射源时的控制区距离aⅠ
产品名称:REN300+REN-3He-N型固定式中子、伽玛报警仪
产品描述:本报警仪由REN300在线辐射安全报警仪和REN-3He-N中子探头和REN-NaI30伽玛探头组成。该辐射报警装置是采用特殊设计的前置放大电路,具有灵敏度高、操作方便、自动显示、数据存储和超阈值报警等特点,能实时给出x射线、γ射线、中子射线的辐射剂量率。考虑到现场操作、应急快速响应的需要,主机安装
产品名称:REN-GM45-Mul型α、β、γ、X多功能射线探头
产品描述:REN系列智能化辐射探头均可和REN300、REN300A、REN300B系列主机配套使用,也可以单独配套RenRiArea辐射区域监测软件使用。且具有RS485/RS232的通讯能力。所有探头均可单独外接报警灯,在超阈值的情况下就地给出声光报警。 1、测量射线类型:α、β、γ、X射线2、探测器:
产品名称:REN200A型X-γ个人剂量报警仪
产品描述:REN200A型X、γ辐射个人剂量当量HP(10)监测仪(简称:个人剂量报警仪)内置高灵敏度盖格计数管为探测器,主要用来监测各种放射性工作场所的X、γ以及硬β射线的辐射,具有响应快,测量范围宽的特点。能显示工作场所的剂量当量率和累积剂量,更换电池时,日期及累积数据能永久保存。可选配RenRiPers
产品名称:REN600型α、β表面污染测量仪
产品描述: REN600Bα、β表面污染检测仪采用闪烁探测法,用来检测放射性工作场所和实验室的工作台面、地板、墙面、手、衣服、鞋等表面受α或β(γ)放射性污染的程度,也可对密封型α、β同位素泄漏水平进行检测。仪器具有较高的探测效率;此外通过配套的 RenRiRate辐射剂量管理软件可将存储的数据读
产品名称:铅屏风、铅衣架、电离辐射警示牌、分源防护屏、铅箱、注射器防护套、报警灯
产品描述:单联移动式防护屏风 1、规格尺寸: H×W:1800×900 (mm)2、商品描述: 上部铅有机玻璃的高度为 H×W:240×240 (mm)3、铅当量: 铅玻璃0.5mmPb, 下部分铅当量为0.5mmpb4、外饰材料:碳素钢板喷
产品描述:REN600A型α、β、γ射线表面污染检测仪即可检测α、β、γ射线,也能检测到X射线,它采用高速嵌入式微处器作为数据处理单元,点阵式大屏幕LCD液晶显示,读数清晰、操作方便,具有400条超大容量数据存储。仪器采用进口的大面积MICA盖革探测器,具有较高探测效率,可进行α、β辐射表面污染检测和X、γ辐